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ABSTRACT: Plastic prepared from formulations of cornstarch and poly(b-hydroxybu-
tyrate-co-b-hydroxyvalerate) (PHBV) biodegraded in tropical coastal waters. Biodegra-
dation was monitored for 1 year. Starch—PHBV bioplastic appeared to lose weight in
two overlapping phases until both biopolymers were entirely consumed. To examine the
underlying degradation of starch and PHBV from biphasic weight-loss profiles, a
semiempirical mathematical model was developed from which degradation profiles and
lifetimes of the individual biopolymers could be predicted. The model predicted that
starch and PHBV in the bioplastic had half-lives of 19 days and 158 days, respectively.
Computed profiles also predicted that the starch in the composite would be completely
degraded in 174 days, while residual PHBV would persist in the marine environment
for 1107 days. The model further revealed that, for a 30% starch : 70% PHBV composite,
PHBV degradation was delayed 46 days until more than 65% of the starch was
consumed. This suggested that PHBV degradation was metabolically repressed by
glucose derived from starch. Glucose repression of microbial PHBV degradation was
substantiated in 91 of 100 environmental isolates. The validity of the elaborated model
was proven when its revelations and predictions were later confirmed by chemical
analysis of residual bioplastic samples. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76:
1767–1776, 2000
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INTRODUCTION

There is growing public awareness and concern
over environmental pollution caused by careless
disposal of plastic materials into marine waters

around the world. An international marine pollu-
tion treaty has been ratified that sets restrictions
on plastic and garbage disposal from private ves-
sels at sea. In support of the treaty, the U.S.
Congress passed the Marine Plastic Pollution and
Control Act (Public Law 100-220), which specifi-
cally prohibits overboard disposal of plastics any-
where in the world by U.S. Government vessels.
The law required all federal agencies, including
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the Navy and Coast Guard, to be in compliance by
31 December, 1998. Consequently, increased at-
tention has recently been given to replacing con-
ventional plastics with biodegradable alterna-
tives.1–5

New plastics prepared from biodegradable ma-
terials such as plant biopolymers and microbial
polyesters have received considerable interest as
natural alternatives to conventional synthetic
plastics. Composite formulations of cornstarch
and poly(b-hydroxybutyrate-co-b-hydroxyvaler-
ate) (PHBV) form bioplastics that have good me-
chanical properties and biodegrade at rates that
are comparable to rates observed for the individ-
ual components.6–9 Plastic composed of starch
and microbial PHBV was expected to be highly
biodegradable. However, composite starch–PHBV
bioplastic that was submerged in tropical coastal
waters for 1 year exhibited weight-loss vs. time
profiles that were not predictable.10

Although starch and PHBV are biodegradable,
the rate at which they degrade in a plastic com-
posite is influenced by many factors, including
surface area, temperature, microbial density and
composition, enzyme percolation, microbe infil-
tration, glucose repression of enzymatic activity,
etc. The manner in which these factors interact to
produce the particular degradation profiles ob-
served for starch–PHBV composites is not under-
stood. Although composite bioplastics are attrac-
tive alternatives to synthetic plastics, their devel-
opment is hampered by the absence of knowledge
or theory about underlying behavior of the indi-
vidual components. The goal of this research was
to gain understanding of this underlying behavior
from predictions and revelations obtained by fit-
ting a semiempirical mathematical model to ob-
served biodegradation profiles.

BACKGROUND

Starch–PHBV formulations produce bioplastics of
acceptable quality that meet the biodegradability
requirement set forth in the international marine
pollution treaty. Several experimental bioplastic
composites were tested for biodegradability in
tropical coastal waters of Puerto Rico.10 Biode-
gradability was measured by weight loss of spec-
imens recovered from the water periodically. The
degradation appeared to result from microbial
consumption of starch and PHBV in the marine
environment where starch degraders in the mi-
crobial population were much more prevalent

than PHBV degraders. Accordingly, biodegrada-
tion of a given composite bioplastic correlated
with the amount of starch present. However,
starch–PHBV composites appeared to biodegrade
in two overlapping phases until both starch and
PHBV were entirely consumed.

In the absence of a known cause, the biphasic
degradation was postulated to arise from two sep-
arate biodegradation processes in which starch
and PHBV were consumed at different rates. To
verify this hypothesis, bioplastic weight-loss data
was fitted to a mathematical model that assumed
the weight-loss curve over the period exposed to
the marine environment could be exactly de-
scribed as the sum of two independent sigmoidal
exponential functions of time. The fitted mathe-
matical model was then used to predict the un-
derlying weight-loss curves, lifetimes, and other
temporal biodegradation characteristics of the in-
dividual starch and PHBV components.

THEORY

A realistic mathematical model of starch–PHBV
biodegradation must take into account the follow-
ing conditions from obvious facts and logic:

1. Two separate and temporally different bio-
degradation processes occur simultaneously.

2. Neither of the two components requires the
presence of the other to biodegrade.

3. Degradation of the composite bioplastic, as
measured by weight loss, is nonlinear with
time.

4. Degradation of either one or both of the
components must be nonlinear.

5. Total weight loss from the composite bio-
plastic at any given time is the sum of the
losses from the two components. Equiva-
lently, component weights must add up to
the total remaining at any time.

6. Weight loss from each component at any
given time must be less than or equal to its
original weight in the composite.

7. Weights of degraded and undegraded com-
ponents at any time must sum to the orig-
inal weight of the composite.

8. Complete biodegradation of both compo-
nents will occur in bioplastic exposed to the
environment for an infinite time.

9. Degradation of each component can reach a
maximum equal to its original concentra-
tion in the bioplastic in any finite time.
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10. All degradation curves are obliged to pass
through the origin; i.e., weight loss is zero
at zero time.

11. Underlying degradation functions can be
monotonic, but must have sufficient flexi-
bility to model possible delayed accelera-
tions (S-shaped curves) in the biodegrada-
tion of either component.

12. Monotonicity is possible but not required
in the composite sum of the underlying
degradation functions.

13. Slopes of weight-loss curves must be posi-
tive at all times or zero, because weight
gain from degradation is physically impos-
sible.

14. Negative values for component concentra-
tions or negative weight losses at any time
are forbidden.

A reasonable mathematical model can also
take into account the following assumptions that
are supported by observation and experience:6–10

1. Degradation of each component at the mi-
croscopic level in a given instant, the
weight differential, is directly proportional
to the weight of the component remaining
exposed at the given time.

2. Underlying degradation functions are
monotonic, possibly sigmoidal, and their
degradation rates are independent of each
other. These are corollaries of the assumed
proportionality of weight differentials to
component weights at the microscopic
level.

3. No obligatory mathematical interaction ex-
ists between components; i.e., component
weight losses are inherently additive but
no multiplicative, logarithmic, or other re-
lation exists between them.

Adherence to the above factual conditions and
assumptions is crucial to construct a semiempiri-
cal mathematical model of the temporal behavior
of starch–PHBV composites during biodegrada-
tion. No a priori theoretical information about the
chemistry or physics of the bioplastic is included
in the model. Instead, these conditions and as-
sumptions are built into the model as quasi-the-
oretical rules that the model must obey as it is
statistically fitted to experimental data. Hence,
the model is semiempirical, a kind of hybrid in the
area between theory and statistics, which can

provide knowledge and insight into otherwise hid-
den or unmeasurable phenomena.

Construction of the Model

To build a mathematical model based on the
above conditions and assumptions we designate
the underlying profiles as w1(t) for starch biodeg-
radation and w2(t) for PHBV biodegradation.
These are the unknown weight-loss functions of
time t. Either one or both of the functions w1(t)
and w2(t) must be nonlinear because their known
sum is nonlinear, but their shapes are unknown.
To model the shapes of the underlying functions,
we invoke our assumption of proportionality of
the weight differential, which can be defined
mathematically by an exponential function of
time as shown below:

Consider the infinitesimal changes in the
weight of a microscopic volume of bioplastic avail-
able during degradation. If the available weight of
bioplastic is halved, the potential weight loss in
the diminished volume will also be halved. Thus
the weight-loss differential dw in a given instant
of time dt is directly proportional to w, the weight
of bioplastic available at the time, i.e., dw/dt } w.
Therefore,

dw
dt 5 2aw (1)

where a is a proportionality constant. The nega-
tive sign is introduced because weight decreases
as time increases. Integration of eq. (1) over the
time span t gives the weight loss due to biodegra-
dation. Transposing the variables gives:

E
w0

w dw
w 5 2a E

0

t

dt (2)

where w0 is the original weight at zero time, and
w is the weight at time t.

Solving, we obtain a simple exponential func-
tion

w 5 w0 e2at (3)

that describes how the bioplastic weight changes
with time under our assumption of proportional-
ity; the process is driven by exponential events at
the microscopic level.
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However, to meet all of the factual conditions
listed above at the more complex macroscopic
level, the model must be more flexible and less
constrained than this simple exponential func-
tion. In particular, one of the factual conditions
requires a function that can model possible lag
times or delayed accelerations in the underlying
degradation curves that would appear more or
less S-shaped. For this, we propose a sigmoidal
exponential function w(t) that has the form

w~t! 5
w0

~a1 1 a2e2a3t!
(4)

where the a’s are positive constants. This func-
tion, eq. (4), is our generalization of the sigmoid
transfer function, which is commonly used as a
special case in artificial neural networks.11,12 It
can fit data with an extended lag time, or no lag
time at all, whichever the case may be. It can be
used as is to represent a rather stiff sigmoidal
exponential, or it can be further modified for more
flexibility. Therefore, to meet the flexibility con-
dition we add two more exponential terms giving

w~t! 5
w0

~a1 1 a2e2a3t 1 a4e2a5t2
1 a6e2a7t3

!
(5)

It is necessary to limit the number of exponential
terms to three, as in a third-degree polynomial, to
preserve the required monotonicity. Also, the neg-
ative signs in the exponents force the slopes of the
underlying degradation curves to be positive at
all times, as required.

The function w(t) in eq. (5) is now capable of all
behavior needed to model an underlying degrada-
tion curve except for two final conditions still to be
satisfied: zero weight loss at zero time, and max-
imum weight loss by infinite time. To meet the
zero-weight condition, we subtract from the func-
tion w(t) in eq. (5) its constant value when t 5 0.
Thus,

w~t! 5 w0F 1
~a1 1 a2e2a3t 1 a4e2a5t2

1 a6e2a7t3
!

2
1

~a1 1 a2 1 a4 1 a6!
G (6)

and the underlying weight loss now becomes zero
at zero time, regardless of the size of the con-
stants.

To satisfy the maximum-weight condition we
divide the function w(t) in eq. (6) by the difference
between the reciprocals of the denominator terms
in the same function when t 5 `. Thus, upon
dividing eq. (6) by the difference [1/ a1 2 1/( a1 1
a2 1 a4 1 a6)] and simplifying terms we have

w~t! 5 S w0a1

a2 1 a4 1 a6
D

3 S a1 1 a2 1 a4 1 a6

a1 1 a2e2a3t 1 a4e2a5t2
1 a6e2a7t3 2 1D (7)

which reaches a maximum weight loss w0 , equal
to its original weight, at infinite time. Whatever
its shape, w(t) is now obliged both to pass through
the origin and to reach a virtual maximum in real
time. Moreover, w(t) cannot exceed w0 or drop
below zero weight loss at any time.

This function, eq. (7), is also driven by expo-
nential events at the microscopic level, but unlike
eq. (3), it can model all possible macroscopic be-
havior of either of the two underlying degradation
processes required by the factual conditions and
assumptions listed above. It is sufficiently flexible
to fit any monotonic, nonlinear degradation pro-
file with precision.

The function w(t) in eq. (7) can be used for
either starch biodegradation w1(t) or PHBV bio-
degradation w2(t). When used for w1(t), the con-
stants w0, a1, a2,. . . . and a7 of w(t) are labeled
w10, a11, a12, . . ., and a17, respectively, but when
used for w2(t) the same constants of w(t) are la-
beled w20, a21, a22,. . ., and a27, respectively. The
new subscripts merely denote the starch con-
stants differently from the PHBV constants. In
our model w10 is the known original concentration
(%) of starch in the composite bioplastic, while
w20 5 100 2 w10 is the known original concentra-
tion of PHBV in the composite. Hence, there are
seven unknown parameters in the starch function
and seven unknown parameters in the PHBV
function.

Convoluting the starch function w1(t) with the
PHBV function w2(t) by addition, we obtain a
resulting sum that contains 14 unknown param-
eters. This sum, which we will designate as W(t),
is the weight-loss function of the composite
starch–PHBV bioplastic, i.e.,

W~t! 5 w1~t, w10, a11, a12, . . . , a17!

1 w2~t, w20, a21, a22, . . . , a27! (8)
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where the component weight-loss functions w1(t,
w10, a11, a12, . . ., a17 ) and w2(t, w20, a21, a22, . . .,
a27 ) both have the form of eq. (7) and are, there-
fore, explicitly defined.

Hence, eq. (8) can be used to deconvolute the
weight-loss profile of the starch–PHBV composite
described by the experimental data into the de-
sired biodegradation profiles of starch and PHBV.

Solution of the Model

Given the model of eq. (8), we solve for the param-
eters that best fit the experimental data and
thereby predict the underlying biodegradation
profiles. Using observed data ŵi for i 5 1,2,3, . . .,n
weight-loss measurements over time t the param-
eters are predicted by regression of the ŵi onto t,
where the overlay diacritical mark indicates mea-
sured rather than true weight loss. The unknown
parameters a11, a12, a13, . . ., a17 and a21, a22, a23,
. . ., a27 are obtained statistically by minimizing
the residual errors e in the equation ŵ 5 W(t) 1 e
to give the maximum likelihood fit of the model to
the data. Thus, we solve the constrained nonlin-
ear regression problem:

minimize
a11· · ·a27

O
i51

n

@@w1~t, w10, a11, a12, . . . , a17!

1 w2~t, w20, a21, a22, . . . , a27!#i 2 ŵi#
2

subject to: a11, a12, a13, . . . , a17 $ 0

a21, a22, a23, . . . , a27 $ 0

where w10 5 original starch concentration (%);
w20 5 100 2 w10 5 original PHBV concentration
(%); ŵi 5 weight losses (%) from n $ 14 measure-
ments.

It is important to note that nonlinear regres-
sion methods13–15, which can be used to perform
the above minimization, require at least as many
different measurement times as unknown param-
eters. Otherwise, the system of equations is un-
derdetermined, and the regression process will
not converge to a unique solution. This condition
is not usually encountered in practice.16 However,
a convenient, albeit risky, technique for dealing
with underdetermined systems is to generate as
many additional measurements as needed by in-
terpolation between a number of measurement
times using cubic spline17 or Savitsky-Golay18

smoothing. It can be shown via computer simula-

tion that the regression error introduced by non-
linear interpolation is negligible when the mea-
surements used for smoothing are carefully se-
lected.

It is also worth noting that each of the param-
eters in the function w(t) has a specific and pre-
dictable influence on the behavior of the model.
This means it is possible to control the model
behavior to a large extent by placing tight con-
straints on the range known or expected for par-
ticular parameters in the solution process. For
example, the parameter a1 in w(t) greatly affects
the slope of the S-shaped curve. So, if it is known
that PHBV exhibits very slow weight loss under
certain environmental conditions, we can effect
this behavior in the model by constraining a21 in
eq. (8) to low values, say 0 , a21 , 1. The regres-
sion algorithm will then adjust all of the param-
eters until a21 settles at a value between 0 and 1,
and the maximum likelihood fit of the model un-
der the given conditions is found. On the other
hand, if nothing is known or expected for PHBV
behavior under the given conditions, we can sim-
ply allow the model freedom to behave at will in
the regression by removing the upper bound of
the constraint on a21. This is the situation usually
met in practice for both starch and PHBV. There-
fore, we let the model attain a maximum likeli-
hood fit controlled only by its built-in conditions
and the experimental data.

EXPERIMENTAL

Description of the Data

Full details of the study including materials, sam-
ple preparation, marine stations, determinations
of biodegradation, and physical properties of the
bioplastic before and after exposure to marine
environments are presented elsewhere.10 Briefly,
bioplastic was prepared by blending formulations
of cornstarch and PHBV, which were then ex-
truded as ribbons and annealed. Test samples
were cut, weighed, and transported to test sta-
tions where they were exposed to tropical marine
environments. Samples composed of 100% starch
and other samples composed of 100% PHBV were
used for comparative purposes. Biodegradation
was periodically measured by weight loss of sam-
ples recovered from the marine environments for
1 year. Experimental errors in the gravimetric
weight measurements were considered to be neg-
ligible.
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One bioplastic was a 30% starch–70% PHBV
composite that was evaluated for degradability by
submersion in a mangrove on the southwest coast
of Puerto Rico. Test samples were retrieved from
the water at 25-day intervals during the first 150
days. A final sample was retrieved after 365 days.
The 30 : 70 starch–PHBV composite was selected
for this modeling study because of its curiously
pronounced biphasic degradation profile that rep-
resented a characteristic phenomenon observed
to some degree in all composites. As shown in
Figure 1, the weight-loss profile exhibits two con-
spicuous steps that appear to arise from separate
overlapping phases in the degradation process.

Pretreatment of the Data

For this study, only seven weight-loss measure-
ments were available from samples, while, in
principle, our model requires at least 14 measure-
ments for solution. Therefore, seven additional
data points were generated by computer interpo-
lation between selected measurements (three
points at a time) using a cubic spline smoothing
routine in SigmaPlot software (Jandel Scientific,
Inc.). Figure 2 shows the “dummy” points, each
interpolated within 5 days of an actual weight-
loss measurement.

Kinetic Parameter Estimation and Deconvolution

The model of eq. (8) was used as the objective
function to estimate the unknown kinetic param-
eters and deconvolute the weight-loss profile of
the 30 : 70 starch–PHBV composite by solving the
constrained nonlinear regression problem stated

above. Sums of squared residual errors in fitting
the model to the experimental data of Figure 2
were minimized using a Marquardt-Leven-
berg19,20 curve-fitting algorithm supplied with
SigmaPlot software. Loose inequality constraints,
(a11, a12, a13, . . ., a17 $ 0 and a21, a22, a23, . . ., a27
$ 0) were placed on all unknown parameters. The
original starch and PHBV concentrations were
set at their known percentages, w10 5 30 and w20
5 70. Depending on the starting approximations
for the unknown parameters, which in this soft-
ware required much trial and error, the minimi-
zation process converged in 100–200 iterations at
the solution which best fit the 14 data points
according to a least-squares criterion (norm
5 1.3681). The software returned positive values
predicted by the model for the 14 unknown pa-
rameters.

Deconvolution of the composite weight-loss
profile of Figure 2 into the underlying weight-loss
profiles for starch and PHBV was achieved by
substituting the predicted parameter values in
eq. (8) and plotting W(t), w1(t, w10, a11, a12, . . .,
a17), and w2(t, w20, a21, a22, . . .,a27) separately.

Component Weight Loss by Chemical Extraction

Individual losses of starch and PHBV from par-
tially degraded bioplastic were determined by ex-
tracting residual PHBV with dichloromethane.
Soluble PHBV was thereby separated from insol-
uble carbohydrate. The separated contents were
recovered, dried, and weighed, and final individ-
ual biopolymer concentrations were calculated as
percentage of starch and percentage of PHBV in

Figure 2 Interpolated biodegradation data from cu-
bic spline smoothing between selected weight-loss data
points from Figure 1. Measured points (F) and interpo-
lated points (■).

Figure 1 Weight loss from degradation of a 30 : 70
starch–PHBV bioplastic submersed in water at edge of
a tropical mangrove stand.
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the degraded sample. Sample weight losses due to
individual degradation of starch or PHBV were
calculated as

wct 5 wco 2 wct~1 2 wt /100! (9)

where wct is weight percent of the sample lost due
to degradation of a particular biopolymer compo-
nent c (either starch or PHBV) at time t, wco is the
weight percent of component c originally present
in the undegraded sample, wct is the weight per-
cent of component c remaining at time t in the
degraded sample, and wt is the measured weight
loss (%) of the composite bioplastic.

PHBV Glucose Repression Assay (Microbiology)

Water samples were collected in randomly se-
lected locations at four sites in tropical coastal
waters off the south western coast of Puerto Rico.
The location of these sites has been described
earlier.10 Sterile screw-capped bottles were taken
to approximately 1.0 m depth, opened, allowed to
fill, and the cap was replaced. The samples were
immediately transported to the laboratory and
200 mL of each sample was plated out on MB agar
(Difco Laboratories, Detroit, MI). The plates were
incubated at 25°C for 24–48 h. Individual colo-
nies from these plates were transferred to plates
containing PHBV as a sole source of carbon and
incubated at 25°C for 48–96 h. The composition of
the medium has been described earlier.10 Individ-
ual colonies showing clearing zones were trans-
ferred with sterile toothpicks to PHBV agar sup-
plemented with 2% glucose. Growth on these
plates was monitored for 48–120 h for signs of
clearing zones.

RESULTS AND DISCUSSION

There were four objectives of this research: first,
to construct a semiempirical mathematical model
of the underlying degradation behavior of both
starch and PHBV in composite bioplastic; second,
to develop a numerical solution of the unknown
kinetic parameters; third, to describe and inter-
pret the underlying degradation behavior re-
vealed by the model; and fourth, to verify the
model and parameters by comparison with starch
and PHBV degradation profiles obtained chemi-
cally.

Interest in the biphasic weight-loss profiles ex-
hibited by starch–PHBV composites led to a pos-

tulation that biodegradation of composite bioplas-
tic occurs in two overlapping phases. Based on
this and a number of factual conditions and rea-
sonable assumptions, a biodegradation model was
elaborated in the Theory section (eq. (8)), which
consists of two terms: a function for estimation of
starch degradation behavior, and another for es-
timation of PHBV degradation behavior. Both
functions are mathematically identical, having
the sigmoidal exponential form of eq. (7), and
differ only in the values of the parameters.

Computed Parameter Values

The model, eq. (8), was fitted to experimental
weight-loss data from the 30 : 70 starch–PHBV
composite, which was exposed to the tropical
mangrove environment for 1 year. Fitted param-
eters from the solution of the constrained nonlin-
ear regression problem are listed in Table I.
These are the values predicted by the model for
the 14 unknown parameters. They are all positive
constants as required by the constraints embod-
ied in the model but, what is more important, the
corresponding parameters for starch and PHBV
show considerable differences which reflect large
dissimilarities in the degradation of the two
biopolymers. For example, in Table I the value of
the first fitted parameter a1 is 1,697,749 for
starch but only 1.5168 for PHBV. This fact en-
ables us to predict a much larger biodegradation
rate for starch than for PHBV in the early days of
exposure. All of the fitted parameter values con-
tain information about the degradation of starch
and PHBV that can be deduced from the numbers
alone.

Table I Model Parameter Values Predicted for
Biodegradation of a 30 : 70 Starch–PHBV
Composite Exposed in a Tropical Mangrove
Environment

Parametera Starch PHBV

w0 30 70
a1 1697748.8876 1.5168
a2 1.6361 16347.2916
a3 0.0826 0.0620
a4 1.3112 1.0292
a5 1.2607e-4 4.1354e-6
a6 5.2106e-3 0.7673
a7 6.9998e-3 7.5779e-3

a The notation of eq. (7) is used for simplicity.
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Predictions and Revelations of the Model

It is more informative to graphically represent
the weight loss profiles predicted by the model, as
shown in Figure 3. The upper curve represents an
excellent fit of the model to the weight-loss data
for the 30 : 70 starch–PHBV composite, while the
underlying curves represent the starch and
PHBV weight-loss profiles predicted by deconvo-
lution of eq. (8).

The weight-loss profiles reveal that starch and
PHBV degrade at dramatically different rates.
Starch in the composite biodegraded much faster
than PHBV during the first few days of marine
exposure, and PHBV showed a delayed onset of
degradation, or lag time, in the presence of the
starch. Significant PHBV degradation was de-
layed for 46 days until the starch was more than
65% consumed, at which time measurable PHBV
degradation occurred and then rapidly acceler-
ated. The rate of starch degradation was maxi-
mum in the first few days of exposure. PHBV
reached its maximum degradation rate 142 days
later. The computed profiles predicted that starch
in the 30 : 70 starch–PHBV composite would be,
in practical terms, completely degraded by 174
days of exposure, while residual PHBV would per-
sist in the marine environment for 1107 days. The
model also predicted that starch and PHBV in the
composite would have respective half lives of 19
days and 158 days. These predictions are summa-
rized in Table II.

It is also instructive to complement numerical
data with graphics from fitted equations, as
shown in Figure 3. This not only visualizes un-
derlying profiles, but it also suggests and guides

calculation of useful information not discernable
by visual inspection. In this work, the fitted model
and parameters enabled calculation of the predic-
tions listed in Table II. Using eq. (7) for each
biopolymer the half life was calculated as the
value of t at w0 /2; the lifetime was calculated as
the value of t when the function reaches 99.9% of
w0; the maximum rate was calculated as the time
at the point of inflection in the sigmoid function
[when the second derivative of eq. (7) is zero]; and
the onset of degradation (lag time) was calculated
as the time when the function first rises (arbi-
trarily 0.1%).

One unexpected revelation, which became ap-
parent after visualization of the deconvoluted
PHBV degradation profile, was the extended lag
period observed before the onset of PHBV degra-
dation. This lag coincided with a period where, as
depicted in Figure 3 by its individual degradation
profile, the majority of starch was lost from the
composite. Such coincidental profiles are reminis-
cent of those of classical glucose repression, which
would be highly plausible given that starch is a
polymer of glucose. To substantiate this revela-
tion, PHBV degrading isolates were obtained
from test station waters. The ability to degrade
PHBV was repressed by the presence of glucose in
all but 9 of 100 isolates tested. Furthermore, the
isolates that did not exhibit glucose repression
were all among the poorer PHBV degraders, as
judged by the size and clarity of clearing zones
surrounding individual colonies on PHBV-con-
taining microbial plates.

Verification of the Model and Parameters

The biodegradation profiles of starch and PHBV
predicted by the model were compared with ex-
perimental weight losses of the individual
biopolymers determined by dichloromethane ex-
traction of the same 30 : 70 starch–PHBV sam-

Table II Predicted Biodegradation Behavior
for Starch and PHBV in a 30 : 70 Starch–PHBV
Composite Exposed to a Tropical Mangrove
Environment

Behavior Starch (days) PHBV (days)

Half life 19 158
Lifetime 174 1107
Maximum rate 1 142
Lag time 0 46

Figure 3 Weight loss profiles of the 30 : 70 starch–
PHBV composite predicted from the biodegradation
model (eq. (8)).

1774 GORDON ET AL.



ples. Experimental weight-loss data resulting
from dichloromethane extraction were calculated
using eq. (9). The experimental data points are
shown in Figure 4 superimposed upon the weight-
loss profiles predicted for starch and PHBV by the
model. Within experimental error, estimated
from a single outlier (impossible weight-gain da-
tum not shown), the predicted biodegradation
profiles were in excellent agreement with the
chemical extraction data (plotted in Fig. 4), which
were obtained after the model predictions. This
was particularly instructive in view of the some-
what arbitrary selection of interpolated measure-
ments. That is, even greater accuracy would be
expected had more samples been available. Ide-
ally, many more than 14 samples would be ex-
posed and weighed to eliminate the need for data
interpolation and improve the reliability of the
predictive model.

The computed profiles are good estimates of
starch and PHBV degradation in the composite
bioplastic because the chemically extracted
weight-loss data support the predictions of the
biodegradation model. This corroboration indi-
cates that the above predictions and revelations
can be accepted with confidence, and further-
more, that prediction by the model offers an ad-
vantage over prediction by plotting data from
chemical extraction. Attempts at prediction by
any feasible chemical method would require
many more test samples than would be practical
to adequately describe degradation profiles with
the resolution and information that the model
provides.

CONCLUSIONS

A semiempirical mathematical model was devel-
oped from which the underlying degradation pro-
files and other kinetic behavior of starch and
PHBV in a composite bioplastic exposed to a trop-
ical marine environment were accurately pre-
dicted. The model verified the hypothesis that
biodegradation of a typical composite occurs in
two overlapping phases, with starch and PHBV
degrading in markedly different profiles. It also
revealed a delayed onset or lag in PHBV degra-
dation, which was presumably caused by the
presence of the starch.

Composites of starch and PHBV are known to
degrade at rates that are intermediate to those ob-
served for bioplastic containing 100% starch or
100% PHBV.10 However, the biphasic degradation
(Fig. 3), reflecting the initial depletion of starch
followed by PHBV loss, was not expected. This lag
period can be attributed to the far greater number
of starch-degrading microbes relative to PHBV de-
graders present in tropical waters, as well as to the
fact that most PHBV-grown microbes also grow on
starch. Glucose repression of PHA-esterase activity
has been suggested as a possible explanation for the
lag in PHBV degradation seen in the starch–PHBV
composites.10 Glucose (starch) repression of PHBV
degradation is likely to be a salient phenomenon in
a number of environments, a hypothesis that re-
quires validation.

This is a plausible hypothesis that resulted
from the insight and understanding gained from
the predictions and revelations of the biodegrada-
tion model. It was possible to uncover the hidden
and unmeasurable biodegradation profiles of both
starch and PHBV from the weight-loss profile of
the composite bioplastic. As though it were a kind
of mathematical X-ray lens, the semiempirical
model served to visualize and measure images of
heretofore unseen degradation profiles of two
components in the bioplastic, which were later
confirmed by chemical extraction. The lag period
was never anticipated or imagined before, yet the
model predicted its existence and even measured
the lag time. Thus, the usefulness of the model in
this research has been proven. However, the
present research is a special case. Generally, a
semiempirical model would be used as a tool for
comparing the relative behavior of different com-
posites within a single experiment.

It is important to remember that new kinetic
parameters for the model must be computed for
each new material in each environment studied.

Figure 4 Deconvoluted weight-loss profiles of starch
and PHBV in the biodegraded composite compared
with weight losses of starch (■) and PHBV (F) deter-
mined by chemical extraction.
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The parameters in Table I are not absolute pre-
dictions, and cannot be applied to different exper-
iments. This is in the nature of semiempirical
models; they are not strictly theoretical models,
and should not be viewed as absolute. However,
when used appropriately, as shown in this work,
semiempirical models are much more informative
than purely empirical ones. Therefore, by fitting
the model of eq. (8) to biodegradation data from
new bioplastics in the future it will be possible to
make important conclusions and discoveries
based on this research.

The degradation model will be another valuable
tool for comparing the biodegradability of new com-
posite bioplastics in the effort to meet the require-
ment of the international marine pollution treaty.

The authors appreciate the excellent assistance of Li-
ang Chen, Jan Lawton, Joyce Blumenshine, McShell
Hairston, Deborah Bitner, and Christopher James.
Names are necessary to report factually on available
data; however, the USDA neither guarantees nor war-
rants the standard of the product, and the use of the
name by USDA implies no approval of the product to
the exclusion of others that may also be suitable. All
programs and services of the U.S. Department of Agri-
culture are offered on a nondiscriminatory basis with-
out regard to race, color, national origin, religion, sex,
age, marital status, or disability.
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